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Abstract

The central objective of factor analysis is to explain the

greatest amount of variance in a data set with the smallest

number of factors. Higher-order analysis is an invaluable

tool that offers the benefit of parsimony provided by

first-order analysis with the opportunity to make data-

based generalizations beyond the first-order. Higher-order

analysis provides a hierarchical framework that better

honors the reality with which we perceive many phenomena in

the social sciences. Interpretation of higher-order factors

requires careful understanding and consideration on the

part of the individual researcher.

3



Higher-Order Analysis 3

Factor analysis is a useful technique for managing and

interpreting data with many variables. Reducing the number

of variables in an analysis to a smaller number of factors

facilitates understanding of the data and allows for

greater generalization. Higher-order analyses present

additional perspectives on data and opportunities for

increased generalization. Hetzel (1996) provides an

excellent review of the basic concepts in factor analysis.

Higher-order analysis makes sense conceptually when we

consider that many phenomena are considered to exist in a

hierarchical structure. For instance, the idea of general

intelligence (g) can be conceptualized as subsuming both

verbal IQ and performance IQ. Verbal IQ and Performance IQ

in turn each subsume several Wechsler subtests, and each

subtest subsumes several individual items (Gray, 1997).

Thus, higher-order analysis seems to represent our

perceptions of reality more accurately than first-order

analysis alone.

The the present paper provides a conceptual basis for

understanding higher-order analysis and elucidates the

interpretations that can be made from such analyses.

Although a conceptual, rather than a mathematical,

framework of factor analysis is presented here, a step-by-
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step discussion of a real factor analytic example is

provided to help make computer-based results more clear.

Review of First-Order Analysis

To review, the objective of factor analysis is to

explain the maximum amount of variance in a set of measured

or observed variables with the smallest number of synthetic

or latent factors, or latent constructs. The relationships

among measured variables are expressed in a matrix of

associations, such as a correlation matrix or a variance-

covariance matrix. Like regression analysis, factor

analysis is an example of the general linear model and

therefore yields a set of weights that are applied to the

measured variables to obtain scores on the latent factors

(Vidal, 1997) . The weights in factor analysis are called

factor pattern coefficients. The factor pattern

coefficients are analogous to the weights in regression

analysis (Hetzel, 1996; Vidal, 1997).

Factor analysis also yields a factor structure matrix,

which is composed of factor structure coefficients, that

represent the bivariate correlations between each variable

and each one of the factors. The factor structure,

coefficients are analogous to the structure coefficients in

regression analysis (Hetzel, 1996; Vidal, 1997) . When the

5



Higher-Order Analysis 5

factors are uncorrelated, the factor pattern matrix is the

same as the factor structure matrix.

The factor pattern and the factor structure matrices

together provide information from which the factors can be

identified or interpreted. Typically, factor pattern and

factor structure coefficients with magnitudes greater than

.60 are considered to be high and coefficients with

magnitudes greater than .30 are considered to be moderately

high (Hetzel, 1996) . Interpretation of factors, however,

should be based on convergence of information from the

relevant coefficients and information from other relevant

sources (Hetzel, 1996).

Each measured variable in a factor analysis has a

communality coefficient (h2) that equals the sum of the

squared structure coefficients for that variable. The

communality coefficients range from 0 to 1 and represent

the amount of variance in each measured variable that is

reproduced by the latent factors as a set. Each factor, or

latent construct, in a factor analysis has an eigenvalue

which represents the variance in the original data matrix

that is reproduced by each of the factors. Eigenvalues

range from 0 to the number of variables. In Principal

Components Analysis (PCA), the sum of the squared structure

coefficients for a factor equals the eigenvalue for that

6
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factor. The eigenvalue can be converted into an effect size

statistic by dividing the eigenvalue for a factor by the

number of measured variables. In PCA, the sum of the

eigenvalues is equal to the sum of the communality

coefficients and can be divided by the number of variables

to yield an effect size statistic that represents the

portion of variance from the original data matrix that is

reproduced by all the factors as a set.

Upon examination of the relevant statistics, the

decision of which factors to retain can be made according

to several rules. Examples of factor retention rules

include eigenvalue greater than one, scree test, tests of

statistical significance, Minimum Average Partial (MAP),

and parallel analysis. For more information concerning

factor retention methods, refer to Hetzel (1996) or Stevens

(1996) . Knowledgeable researchers should use an approach

based on theory and personal values as well as computer

results.

Typically, after factors are extracted, the first

factor reproduces the greatest amount of the variance.

Factor rotation can be helpful by spreading the variance

more evenly across the factors and thereby clarifying the

factor structure. Factor rotation can be accomplished

either orthogonally (yielding uncorrelated factors) or

7
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obliquely (yielding correlated factors) . Examples of

computerized orthogonal rotation procedures include Varimax

and Quartimax; examples of computerized oblique rotation

procedures include Promax and Oblimin. After rotation,

factors are ready for interpretation by the researcher.

Imagine a test of 200 items. Analyzing scores on each,

separate item could be a difficult and time-consuming

process. With factor analysis, however, a set of factors

could be extracted that would allow for a more efficient

analysis of the data. For instance, six factors may be

extracted that may be called, "vocabulary," "written

clarity," "reading comprehension," "quantitative concepts,"

"arithmetic speed," and "mathematic analysis." Each of the

six factors would be expected to explain a portion of the

variance in some items. Instead of attempting to make sense

of 200 items separately, we can interpret scores on only 6

factors. This is the general purpose of factor analysis.

It may happen that a degree of generalization beyond

the six first-order factors is desired. For this purpose,

higher-order factors may be extracted.

Higher-Order Analysis

The first-order analysis is a close-up view that
focuses on the details of the valleys and the peaks in
mountains. The second-order analysis is like looking
at the mountains at a greater distance, and yields a
potentially different perspective of the mountains as
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constituents of a range. Both perspectives may be
useful in facilitating understanding of data.
(Thompson, 1990)

In other words, first-order factors provide a high degree

of accuracy, but a low degree of generalization. Second-

order factors offer a lower degree of accuracy, but a

higher degree of generalization.

Higher-Order Factor Extraction

The higher-order factor analytic process is described

as follows. First, the first-order factors must be rotated

obliquely, yielding correlated factors in the form of a

factor pattern coefficient matrix (P0. The resulting

correlated factors make up a factor x factor correlation

matrix (Rfxf) that itself is then used as the matrix of

associations, or input, for the second-order factor

analysis. From the factor x factor matrix of associations,

second-order factors (Pf,th) are extracted and a retention

rule is applied to determine the number of factors.

An important note about factor retention rules in

higher-order analysis must be made. Most methods of factor

retention that are used for first-order factors can also be

used for second-order factors. The exception to this rule

is statistical significance testing. Statistical

significance testing is inappropriate for use with higher-

order factors because the sampling distribution of

9
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correlation coefficients for the first-order factors will

vary according to the rotation procedure used (Gorsuch,

1983) . Thus, informed researchers should use the eigenvalue

> 1 rule, scree test, or some other extraction rule at the_

second-order level.

Returning to our previous example, we may imagine that

two possible second-order factor names would be "verbal

proficiency" and "quantitative proficiency." We could then

rotate the higher-order factor matrix (Pfxh), factors by

higher-order factors, obliquely to reveal correlated

second-order factors. The second-order factor by second-

order factor correlation matrix could potentially be used

to extract third-order factors. In our previous example, a

possible third order factor may be named "Intelligence".

The process of higher-order factor extraction

continues until oblique rotation yields uncorrelated

factors, or until only one factor is extracted. Typically,

factors beyond second or third order are rare. Figure 1 is

a graphical representation of first, second, and third

order factors for our example.

Interpretation of Higher-Order Factors

One common mistake in factor analysis is to base one's

interpretations of higher-order factors on the first-order

factors (Thompson, 1990) . This practice is essentially

10
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"basing interpretations upon interpretations" (Gorsuch,

1983, p. 245) . When we extract first-order factors, our aim

is to remove the variance that is not important or useful

in explaining our object of interest. Variance that is not

useful in explaining first-order factors, may be useful in

explaining second-order factors. Our object of interest

changes from one step to the other, so it would be

senseless to limit the amount of variance under

consideration to that which was useful in describing the

first-order factors. A better approach to the

interpretation of second-order factors is to use

information given by the variables themselves (Thompson,

1985; 1990) . The same holds true for the interpretation of

third-order factors and beyond.

Three methods for interpreting higher-order factors

using information from the original variables have been

developed and will now be discussed. First, Gorsuch (1983)

suggested that the first-order factor pattern matrix (Pvxf)

can be multiplied by the orthogonally rotated higher-order

factor pattern matrix (Pnch). This multiplicative process

yields a variable-by-higher-order factor matrix of factor

pattern coefficients (Pwch).

Second, Thompson (1990) suggested that researchers use

Gorsuch's (1983) rule, but apply a Varimax rotation

11
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procedure to the resulting matrix (Pv,th). Thompson reasoned

that, because rotation is used to clarify other factor

structures, it seems appropriate to employ orthogonal

rotation to clarify interpretations of matrix (Pw,h).

Third, the Schmid-Leiman (1957) solution is another

method for interpreting higher-order factors. This

procedure allows for the simultaneous interpretation of

both orders of factors with respect to the observed

variables. The Schmid-Leiman solution residualizes

(removes) the variance from the first-order factors that is

present in the second-order factors, thereby

orthogonalizing the first and second-order factors to each

other. The following heuristic example should help to make

these methods and the process of higher-order analysis more

clear.

Example Using "SECONDOR"

This example is based entirely on Thompson's (1990)

analysis of dissertation data. Thompson developed the

FORTRAN program, SECONDOR, to compute higher-order

principal components analyses. The program also offers

various methods of factor interpretation. This example is

presented, with permission, to illustrate the step-by-step

process of higher-order analysis and to facilitate

understanding of higher-order results.

12
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The matrix of associations, or input, used in this

example is a correlation matrix of 24 variables and is

presented in Table 1. The first row of values for each

variable represents the correlation between that variable

and variables 1 to 12. The second row for each variable

represents the correlation between that variable and

variables 13 to 24.

A principal components analysis was conducted, and 24

factors were extracted. The eigenvalues are presented in

Table 2. According to the eigenvalue > 1 rule, only six

factors were retained. Table 3 presents the first-order

principal components matrix and h2. Remember that the values

presented in this matrix are analogous to the BETA weights

in regression analysis. Because the factors have not

undergone oblique rotation, and are therefore orthogonal to

each other, the principal components matrix represents both

the factor pattern matrix (BETA) weights and the factor

structure matrix (structure coefficients).

The next step in the analysis is to apply an oblique

rotation procedure to the factor pattern matrix in Table 3.

The Promax method of oblique rotation was used for this

example, and the resulting factor pattern matrix is

presented in Table 4. Because an oblique rotation procedure

was used, the factors are now correlated, and the factor

13
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pattern matrix must be interpreted in conjunction with the

factor structure matrix presented in Table 5.

The factor correlation matrix is presented in Table 6.

This matrix shows the correlations between each of the

first-order factors. If the factors were uncorrelated,

there would still be ones on the diagonals of the matrix,

but there would be zero, values off the diagonals.

The factor correlation matrix presented in Table 6 was

then used as the matrix of associations, or input, for the

second-order factor analysis. The second-order eigenvalues

are presented in Table 7. Given the eigenvalue > 1 rule,

two second-order factors were retained. The second-order

factor matrix is presented in Table 8. The rows in Table 8

represent the 6 first-order factors and the columns

represent the second-order factors. If this was a first-

order analysis, the rows would represent the 24 variables

and the columns would represent the 6 first-order factors.

The second-order factor matrix was rotated

orthogonally to redistribute variance and facilitate

interpretation, as reported in Table 9. If there were more

factors, and a theoretical basis for doing so, the factor

matrix could have been rotated obliquely and third-order

factors could possibly have been extracted. Varimax was the

orthogonal rotation procedure used in this example.

14
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Now that the higher-order factors have been

identified, interpretation becomes the central issue.

Remember that it is inappropriate to base interpretations

of second-order factors on interpretations of first-order

factors. Better practice is to use a rule such as Gorsuch's

(1983) method in which the first-order, obliquely-rotated

factor pattern matrix (Table 4) is multiplied by the

second-order, orthogonally rotated factor matrix (Table 9).

The resulting product matrix is presented in Table 10.

Once multiplication of the two matrices is

accomplished, the trace for the second-order variables is

interpretable with respect to the variables themselves. In

other words, if the trace for second-order Factor A (5.25)

is divided by the number of variables, we can say that

21.9% of the variance in Factor A is explained by the

variance of the variables.

Table 11 presents a Varimax rotation of the product

matrix presented in Table 10. Remember that Thompson (1990)

suggested that this rotation procedure be applied to the

product matrix before interpreting the second-order factors

with respect to the variables. Notice that the distribution

of trace appears more balanced after the rotation

procedure. This difference is due to the rotation, which

distributes the variance more equally across the factors.

15
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Table 12 presents the Schmid-Leiman (1957) solution

for this example. The variable numbers and names are listed

in the first column; the second-order factors head the next

two columns; the first-order factors head the next six

columns; and the last column contains the h2 values. The

trace is listed at the bottom. Using Table 12, we are able

to simultaneously interpret the first and second-order

factors in relation to the variables.

Notice that second-order Factor A appears to be

explained mostly by variables 1, 4, 8, 12, 18, 19, 21, and

23. Judging by the names of these variables, we might

interpret second-order Factor I to represent "intellect."

Second-order factor B appears to be explained mostly by

variables 7, 10, and 20. Given these variable names, we

might interpret second-order Factor II to represent

"warmth." Keep in mind that the sign, positive or negative,

of the values in the columns is important.

Notice that the trace for the second-order factors is

the same as it was for Gorsuch's solution, but the trace

for the first-order factors is less than their original

eigenvalues. This reduction in trace occurred because the

Schmid-Leiman solution orthogonalizes the first-order

factors to the second-order factors, so that the shared

variance is taken out of the first-order factors. In this

16
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example, the second-order factors appear to dominate the

factor space, so we know that we are getting a good deal of

information from the second-order factors.

Although the second-order factors provide much

information, it may still be important to interpret the

first-order factors in relation to the variables. First-

order Factor III, for example, appears to be explained by

variables 2, 6, 7, 9, and 14 and may be interpreted to

represent undirectedness. Most of the variables important

to first-order Factor III, however, are not important to

the second-order factors. Note that in Table 9, the

communality coefficient (h2) associated with Factor III is

considerably low. This is consistent with the relative lack

of importance of first-order Factor III at the second-order

level. Researchers must make judgments about interpreting

factors at either the first- or second-order or both.

Summary

This paper has presented a step-by-step illustration

of the higher-order factor analytic process. Several

interpretation procedures have been reviewed and the

benefits of each discussed. Interested students are

referred to McClain (1996) for another example using

Thompson's (1990) FORTRAN program.

17
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Given the hierarchical nature of many phenomena in the

social sciences, higher-order analyses often appear to be

preferable to first-order analyses used alone. Researchers

must, however, be careful and responsible in making

interpretations from their results. It is simply not

acceptable to make interpretations of higher-order factors

directly from the interpretations of first-order factors.

This uninformed approach is completely unnecessary in light

of the availability of the several interpretation aids as

described previously. It is hoped that this paper has

contributed to understanding of higher-order analysis and

will encourage researchers to make more thoughtful

decisions when interpreting higher-order results.
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Figure 1

First, Second, and Third-Order Factors
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Table 2

Eigenvalues for First-Order Analysis

Variables Eigenvalues

1 6.60609

2 3.10131

3 1.87082

4 1.18534

5 1.08376

6 1.01812

7 0.96067

8 0.82819

9 0.78923

10 0.73786

11 0.69134

12 0.62247

13 0.57061

14 0.53843

15 0.47003

16 0.45479

17 0.42017

18 0.39013

19 0.34574

20 0.30675

21 0.29000

22 0.27659

23 0.25382

24 0.18774
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Table 3

First-Order Principal Components Pattern/Structure Matrix

and h2

Variables Factors h2

IV V VI

1 0.51523 -0.30896 -0.20748 0.35048 -0.00547 -0.24427 0.58649

2 -0.21982 0.11050 0.45469 -0.16208 -0.13961 0.12283 0.32812

3 0.67640 -0.04240 0.00204 0.33686 -0.17469 0.12246 0.61830

4 0.52508 -0.48196 0.05650 0.35249 -0.09473 0.03851 0.64590

5 0.49114 0.20269 0.01245 0.17140 -0.02548 0.63937 0.72128

6 -0.03212 0.32509 0.52468 0.47626 0.11710 -0.15515 0.64661

7 -0.29660 -0.45569 0.44131 0.03683 -0.24539 -0.28243 0.63173

8 0.62144 -0.26451 -0.17713 0.07700 -0.27008 0.08567 0.57374

9 -0.10176 -0.06869 0.56777 -0.12694 -0.30090 0.14040 0.46381

10 0.63817 0.53222 0.04011 -0.01848 -0.24008 0.02957 0.75099

11 0.49836 -0.29985 0.16396 -0.01976 0.10954 0.08132 0.38416

12 0.79435 -0.05498 -0.04111 -0.05451 -0.13076 0.02183 0.65626

13 0.41048 -0.40203 0.26123 -0.15850 0.22116 -0.09136 0.48074

14 -0.10942 0.06450 0.73843 0.16794 0.00001 -0.04558 0.59170

15 0.64379 0.43347 0.06355 -0.12372 -0.24043 -0.12993 0.69640

16 0.75477 0.36278 0.10726 -0.08282 -0.20893 -0.02519 0.76393

17 0.66474 0.32110 0.01652 -0.22608 0.00838 -0.05138 0.59908

18 0.55989 -0.50135 -0.00898 0.20085 0.11177 0.05103 0.62036

19 0.71823 -0.09250 -0.02882 -0.01430 0.03611 -0.36007 0.65640

20 0.35832 0.41899 0.14548 0.23877 0.60881 -0.01471 0.75299

21 0.51820 -0.52506 0.10948 -0.26780 0.22749 0.18243 0.71296

22 0.21196 -0.56770 0.27031 -0.29146 0.16595 0.23587 0.60840

23 0.64161 -0.06695 0.04837 -0.32538 0.05262 -0.35477 0.65299

24 0.50631 0.57267 0.15781 -0.16881 0.28809 0.03765 0.72211

27
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Table 4

Promax-Rotated Factor Pattern Matrix

Variable Factor

III IV V VI

1 -0.02169 -0.71647 -0.19015 0.06500 0.07318 -0.13953

2 0.12826 0.31334 0.48452 -0.08565 -0.04537 0.05279

3 0.25890 -0.64470 0.04700 0.06368 0.04026 0.26581

4 -0.12367 -0.77168 0.09409 -0.16557 0.00695 0.10439

5 0.15269 -0.22425 -0.01878 -0.12821 0.08830 0.75637

6 0.00751 -0.19652 0.49667 0.30257 0.59502 -0.02732

7 -0.19785 -0.15510 0.55929 -0.05180 -0.16375 -0.39318

8 0.25373 -0.53321 -0.10036 -0.07920 -0.28102 0.14018

9 0.16537 0.12209 0.65302 -0.14336 -0.16942 0.05900

10 0.84798 -0.06441 0.06669 0.23992 -0.00218 0.16733

11 0.06118 -0.26115 0.08107 -0.44390 0.08030 0.07994

12 0.52254 -0.33689 -0.05283 -0.18127 -0.10493 0.08911

13 0.02436 -0.11268 0.13150 -0.59205 0.12267 -0.15208

14 0.01732 0.00415 0.72816 -0.04634 0.33111 -0.04661

15 0.89559 -0.02297 0.08525 0.17171 -0.05431 -0.03007

16 0.85451 -0.11531 0.10977 0.06002 -0.01731 0.08335

17 0.72720 0.08352 -0.06499 -0.11209 0.05128 0.01432

18 -0.16051 -0.60285 -0.06395 -0.37688 0.08223 0.08733

19 0.46301 -0.34012 -0.08670 -0.11877 0.08170 -0.29440

20 0.05940 0.01051 -0.11090 -0.09687 0.81106 0.13525

21 -0.04295 -0.10634 -0.03665 -0.80903 -0.02784 0.09660

22 -0.19885 0.02679 0.16153 -0.80484 -0.07934 0.09633

23 0.59444 0.00436 -0.04237 -0.30618 -0.02541 -0.36932

24 0.60843 0.31059 -0.02877 -0.13259 0.40474 0.12906
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Table 5

First-Order Factor Structure Matrix

,

Var. Factors

I v VI

1 0.25252 -0.72363 -0.29105 -0.26257 0.08840 -0.20610

2 -0.08142 0.30906 0.49400 0.06442 -0.05330 0.10363

3 0.50227 -0.67480 -0.09962 -0.23560 0.13087 0.25448

4 0.17992 -0.77491 -0.00027 -0.42971 -0.02819 -0.00726

5 0.41058 -0.26079 -0.08809 -0.16519 0.16106 0.74441

6 0.03486 -0.01175 0.44697 0.28384 0.56635 0.03031

7 -0.37797 -0.06459 0.58371 -0.06076 -0.28186 -0.43533

8 0.42315 -0.65033 -0.22099 -0.37163 -0.19002 0.10416

9 -0.04009 0.10742 0.63041 -0.06894 -0.17987 0.08982

10 0.81244 -0.22850 -0.12520 0.00854 0.25125 0.32383

11 0.28745 -0.44857 -0.02138 -0.54844 0.08390 0.01222

12 0.68401 -0.58861 -0.23903 -0.46214 0.05221 0.10795

13 0.20465 -0.36483 0.03435 -0.64816 0.09643 -0.22724

14 -0.06505 0.07491 0.69075 0.02888 0.27214 -0.01646

15 0.81469 -0.24743 -0.12080 -0.08065 0.20134 0.12748

16 0.85775 -0.35826 -0.11052 -0.20125 0.22643 0.21340

17 0.76269 -0.22020 -0.25012 -0.28023 0.26260 0.11940

18 0.20205 -0.70676 -0.15315 -0.57661 0.04051 -0.04265

19 0.61196 -0.58956 -0.27859 -0.43189 0.21210 -0.27093

20 0.36486 -0.06305 -0.19795 -0.07800 0.83943 0.16004

21 0.23148 -0.42421 -0.11854 -0.83364 -0.05685 -0.02666

22 -0.03550 -0.20701 0.14244 -0.71260 -0.17139 -0.03375

23 0.62371 -0.36756 -0.22995 -0.52034 0.12646 -0.31947

24 0.68247 0.05080 -0.17992 -0.14431 0.57964 0.24939

2 9
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Table 6

First-Order Factor Correlation Matrix

I

II

III

IV

V

VI

1.00000

-0.34165

-0.25003

-0.27462

0.28851

0.15323

1.00000

0.14358

0.41645

-0.01235

0.09625

1.00000

0.10189

-0.08345

0.02842

1.00000

0.03041

0.12899

1.00000

0.03738 1.00000
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Table 7

Eigenvalues for Second-Order Analysis

Factors Eigenvalues

I 1.83302

II 1.25257

III 0.95428

IV 0.88463

V 0.57924

VI 0.49626

31
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Table 8

Second-Order Factor Pattern/Structure Matrix

First-Order Factors Second-Order Factors

A

0.74760 0.38289

II -0.72913 0.30805

III -0.46220 -0.16502

IV -0.66508 0.42795

V 0.28940 0.62338

VI -0.05251 0.64195

3 2
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Table 9

Varimax Rotated Second-Order Factor Pattern/Structure

Matrix and,h2

Factor A B h2

0.51462 0.66384 0.70552

II -0.79096 -0.03029 0.62653

III -0.34858 -0.34548 0.24086

IV -0.78380 0.10545 0.62547

V -0.00232 0.68728 0.47235

VI -0.31983 0.55907 0.41485

Trace 1.72860 1.35700 3.08560

From Thompson, B. (1990). SECONDOR: A program that

computes a Second-order principal components analysis and

various interpretation aids. Educational and Psychological

Measurement, 50, 577. Reprinted with permission of the

author.

3 3
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Table 10

Product Matrix (Psnth) and h2

Var. A B h2

1 0.61533 0.05214 0.38135

2 -0.30037 -0.10244 0.10072

3 0.49176 0.35815 0.37010

4 0.61030 -0.04555 0.37454

5 0.12087 0.58467 0.35645

6 -0.24362 0.26493 0.12954

7 -0.00737 -0.65769 0.43261

8 0.60520 0.09614 0.37551

9 -0.14520 -0.21810 0.06865

10 0.22253 0.65919 0.48405

11 0.53196 0.07358 0.28839

12 0.66761 0.33393 0.55721

13 0.56823 -0.08899 0.33080

14 -0.19773 -0.04358 0.04099

15 0.32450 0.52974 0.38593

16 0.41903 0.57386 0.50490

17 0.41399 0.53410 0.45665

18 0.68380 -0.00060 0.46758

19 0.72457 0.22665 0.57638

20 0.09170 0.70024 0.49875

21 0.67807 -0.06308 0.46376

22 0.42038 -0.27416 0.25189

23 0.67540 0.15289 0.47954

24 0.13918 0.74077 0.56811

Trace 5.25000 3.69440 8.94440

3 4
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Table 11

Varimax Rotated Product Matrix and h2

Var. A B h2

1 0.603 0.135 0.381

2 -0.248 -0.142 0.101

3 0.439 0.421 0.370

4 0.611 0.037 0.375

5 0.041 0.596 0.356

6 -0.277 0.230 0.130

7 0.082 -0.653 0.433

8 0.587 0.177 0.376

9 -0.114 -0.236 0.069

10 0.131 0.683 0.484

11 0.517 0.145 0.288

12 0.616 0.421 0.557

13 0.575 -0.011 0.331

14 -0.190 -0.070 0.041

15 0.250 0.569 0.386

16 0.338 0.625 0.505

17 0.338 0.585 0.457

18 0.678 0.092 0.468

19 0.687 0.323 0.576

20 -0.004 0.706 0.499

21 0.680 0.029 0.464

22 0.454 -0.215 0.252

35
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23

24

Trace

0.649

0.038

4.796

0.243

0.753

4.149

0.480

0.568

8.944

From Thompson, B. (1990). SECONDOR: A program that

computes a Second-order principal components analysis and

various interpretation aids. Educational and Psychological

Measurement, 50, p.578. Reprinted with permission of the

author.
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Table 12

Schmid-Leiman Solution

Variable A B I II III IV V VI h2

1 Intelligent 0.615 0.052 -0.012 -0.438 -0.166 0.040 0.053 -0.107 0.616

2 Undirected -0.300 -0.102 0.070 0.191 0.422 -0.052 -0.033 0.040 0.326

3 Honest 0.492 0.358 0.140 -0.394 0.041 0.039 0.029 0.203 0.590

4 Scholarly 0.610 -0.046 -0.067 -0.472 0.082 -0.101 0.005 0.080 0.625

5 Personable 0.121 0.585 0.083 -0.137 -0.016 -0.078 0.064 0.579 0.727

6 Easy -0.244 0.265 0.004 -0.120 0.433 0.185 0.432 -0.021 0.553

7 Distant -0.007 -0.658 -0.107 -0.095 0.487 -0.032 -0.119 -0.301 0.796

8 Informed 0.605 0.096 0.138 -0.326 -0.087 -0.048 -0.204 0.107 0.564

9 Docile -0.145 -0.218 0.090 0.075 0.569 -0.088 -0.123 0.045 0.431

10 Caring 0.223 0.659 0.460 -0.039 0.058 0.147 -0.002 0.128 0.739

11 Systematic 0.532 0.074 0.033 -0.160 0.071 -0.272 0.058 0.061 0.401

12 Effective 0.668 0.334 0.284 -0.206 -0.046 -0.111 -0.076 0.068 0.705

13 Profound 0.568 -0.089 0.013 -0.069 0.115 -0.362 0.089 -0.116 0.502

14 Simple -0.198 -0.044 0.009 0.003 0.634 -0.028 0.241 -0.036 0.504

15 Concerned 0.325 0.530 0.486 -0.014 0.074 0.105 -0.039 -0.023 0.641

16 Humane 0.419 0.574 0.464 -0.070 0.096 0.037 -0.013 0.064 0.740

17 Motivating 0.414 0.534 0.395 0.051 -0.057 -0.069 0.037 0.011 0.624

18 Analytical 0.684 -0.001 -0.087 -0.368 -0.056 -0.231 0.060 0.067 0.675

19 Knowledgeable 0.725 0.227 0.251 -0.208 -0.076 -0.073 0.059 -0.225 0.748

20 Humorous 0.092 0.700 0.032 0.006 -0.097 -0.059 0.589 0.103 0.870

21 Exacting 0.678 -0.063 -0.023 -0.065 -0.032 -0.495 -0.020 0.074 0.721

22 Rigorous 0.420 -0.274 -0.108 0.016 0.141 -0.493 -0.058 0.074 0.535

23 Enlightened 0.675 0.153 0.323 0.003 -0.037 -0.187 -0.018 -0.283 0.700

24 Warm 0.139 0.741 0.330 0.190 -0.025 -0.081 0.294 0.099 0.817

Trace 5.25 3.69 1.27 1.06 1.46 0.92 0.79 0.71 15.15

From Thompson, B. (1990). SECONDOR: A program that

computes a Second-order principal components analysis and

various interpretation aids. Educational and Psychological

Measurement, 50, p. 579. Reprinted with permission of the

author.
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